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Abstract 

A q u a n t u m  logic is defined as a set L of  func t ions  f rom the set of  all states S into [0, 1 ] 
satisfying the  or thogonal i ty  postulate:  for any  sequence a t, a2 , .  • .  o f  member s  o f  L 
satisfying ai + a] < 1 for i ¢ ] there is b E L such tha t  b + a 1 + a2 + .  • • = 1. Every logic 
L is in a natural  way an or thomodular  a -o r thocomplemented  partially ordered set 
(L, < ,  ') wi th  members  o f  S inducing a full set of  measures  on L. It  is shown that  a logic 
L is quite full i f  and only ff (L, < ,  ') is i somorphic  to an o r thocomptemented  set lattice 
of  subsets  of  S. Sufficient condi t ions  are given in order tha t  a quite full logic be 
representable in the set of  project ion quadrat ic  fo rms  f (u)  = (Pu, u) on a complex  
Hilbert space, or in the  set of  trace f u n c t i o n s f ( A )  = Trace (AP) generated by  projections 
P, where  the  domain  o f f  is the  set of  non-negative self-adjoint trace operators  of  trace 1 
in a complex  HUbert space. 

Let S be a non-empty set (which can be interpreted as the set of  all states 
for a fixed physical system), and let L be a set of  mappings from S into [0, t ] 
(a member of  L can be interpreted as a probability distribution induced on 
S by an experimental proposition). We can operate on members of  L as on 
real functions; that is, for a, b E L,  a + b denotes the function on S defined by 
(a + b) (x )  = a (x) + b(x)  for all x E S (similarly a - b), a = a 1 + a 2 + . . .  means 
that a(x)  = E~.= 1 ai(x) for all x C S, a ~< b means that a(x)  <<. b(x)  for all x ~ S. 
0 and 1 denote the functions (with domain S) equal to 0 and to t for all x E S, 
respectively. 

We adopt the following definitions. 
Definition 1. A sequence al ,  a2, • • • (finite or coutable) of  members of  L is 

said to be orthogonal i fai + a i <~ 1 for i 4=]. A one-element sequence is by 
definition orthogonal. 

Definition 2. L C_ [0, 1] s is said to satisfy the orthogonality postulate (see 
Maczyi~ski (1973a) for a discussion of  the physical meaning) if for every 
orthogonal sequence al, a 2, . . . ,  a i E L, there is b E L such that 
b +al +a2 + . . . =  l. 
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L satisfies the orthogonality postulate if and only if it has the following 
three properties: 

(i) O~L,  
(ii) a E L implies 1 - a E L, 
(iii) for any orthogonal sequence al ,  a2 . . . .  , a i E L, we have 

a 1 +a  2 + . . .  EL .  

In fact, for each a E L (L is of  course assumed to be non-empty), the one- 
element sequence a is orthogonal, so that by the postulate there is b E L such 
that a + b = 1, and consequently b = 1 - a E L. Similarly, for each a E L, the 
sequence a, 1 - a is orthogonal and there is b E L such that b + a  + (1 - a)= 1, 
which implies b = 0 E L. Property (iii) follows directly from the postulate, 
since a 1 + a 2 + . . .  = 1 - b E L by (ii). The converse implication is obvious. 

The following theorem has been proved in Maczyhski (1973a). 

Theorem 1. Let L <~ [0, 1] s satisfy the orthogonality postulate (or 
equivalently properties 0)-(iii)). Then L is an orthomodular o-orthocomple- 
mented partially ordered set with respect to the natural order in L (a ~< b 
if and only i fa (x)  ~< b(x) for all x E S) with complementation a '  = 1 - a. 
Every point u E S induces a probability measure mu on (L, ~<, '), where 
mu(a ) = a(u) for all a E L, and the family of  measures {mu: u E S) is full• 

Conversely, if (L, ~<, ') is an othomodular e-orthocomplemented partially 
ordered set with a full set S of  probability measures, then each a E L induces 
a function 5: S -~ [0, 1] where ~(m) = m(a) for all m E S. The set ofaU such 
funct ions/7= {d: a E L)  satisfies the orthogonality postulate and (/], ~<, ') is 
isomorphic to (L, ~<, '). 

Let us recall the definition of  notions involved in the theorem. 
A partially ordered (p.o.) set (L, <<.) is said to be a.orthocomplemented 

(see Mackey, 1963) if there is a map a ~ a' of L into L with the following 
properties: 

(a) a" = a, 

(b) a ~< b implies b'  -<< a', 
(c) i fa l ,  a2,.  i sasequenceo fmemberso fLsuch tha ta i -~ .a j for i~ /=] ,  

then the least upper bound a 1 v a 2 v . . .  exists in (L, <) ,  
(d) a v a '  = b v b' for all a, b @ L (this element is denoted by 1). 
A e-orthocomplemented p.o. set is said to be orthomodular if 
(e) a < b implies b = a v (a v b ') ' .  

A map m: L ~ [0, 1] is said to be a probability measure if re(l)  = 1 and 
m(a 1 v a2 v . . . )  = m(al)  + re(a2) + . . .  for every sequence a 1, a 2 . . . .  with 
a i ~.aj for i--P]. 

A set of  probability measures {mu: u E S) is said to be full if m u (a) <. m u (b) 
for all u E S implies a ~< b. 

From the proof of  Theorem 1 it follows that i lL  satisfies the orthogonality 
postulate then the least upper bound of  every orthogonal sequence al ,  a 2, . . .  
exists in (L, ~<) and a 1 v a 2 v . . . = a I + a 2 + . . . .  
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Definition 3. A set of  functions L C_ [0, 1] s satisfying the orthogonality 
postulate is called a quantum logic (or briefly a logic). 

The terminology of  Definition 3 is motivated by the fact that it is generally 
assumed (see, for example, Gudder, 1970) that the set of all events or proposi- 
tions (which can be identified with the set of  all probability distributions 
induced on S by them) in quantum mechanics forms in a natural way an 
orthomodular o-orthocomplemented p.o. set with states inducing a full set 
of probability measures on it. We know from Theorem I that this notion is 
equivalent to the notion of  a logic. Hence every logic is in a natural way an 
orthomodular o-orthocomplemented p.o. set and we will always assume that 
a logic is endowed with this structure. Observe that the notion of  a logic is 
not equivalent to an orthomodular o-orthocomplemented p.o. set itself, since 
not every such set admits a full set of  measures (Meyer, 1970). 

The definition of  a logic as given here is convenient since we do not have 
to specify a full set of measures on it: measures are naturally induced by 
points in the domain S. Moreover, isomorphism of logics can be expressed in 
a very simple way. 

Theorem 2. A one-to-one map So from a logic L onto a logic L 1 is an iso- 
morphism (between orthocomplemented p.o. sets (L, ~<, ') and (L 1, ~<, ')) if 
and only i fa  1 + a 2 + . . .  = 1 is equivalent to tp(al) + ~P(a2) + • • • = 1. 

Proof Assume that the condition in the theorem holds. Since b = a' is 
equivalent to a + b = 1, we have ~o(a') = So(a)'. Since a <~ b in a logic is equivalent 
to a + b' + e = 1 for some e, we have a < b if and only if ~0(a) <~ So(b). Hence So 
preserves joins and meets if they exist. Consequently, from 1 = a v a' = a + a' 
we infer that ~0(1) = ~0(a) v ~o(a') = ~p(a) + So(a)' = 1 and tp(0) = ~(1') = 1' = 0. 
Hence ~0 also preserves properties (a)-(d). Hence ~0 is an isomorphism. Conversely, 
if ~o is an isomorphism, then a 1 + a2 + . .  • = 1 implies a 1 v a2 v . . .  = 1, and 
hence ~0(al) v ~0(a2) v . . .  = 1, i.e. ~p(al) + ~p(a2) + . . .  = 1 and conversely. 
This ends the proof  of  Theorem 2. 

We now give three examples of  logics which are most important in 
applications. 

Example 1. Let S be a non-empty set and let B be a o-complete (or complete) 
Boolean algebra of (not necessarily all) subsets of  S. Then the set of  all 
characteristic functions of  members of  B is a logic. 

Example 2. Let H be a complex Hilbert space, S the unit sphere of H and 
L the set of  all projection quadratic forms on H restricted to S. (A projection 
quadratic form on H is a function f(u) of the form f(u) = (Pu, u) where P is 
an orthogonal projection in H.) It is a well-known fact that L is a logic such 
that (L, ~<, ') is isomorphic to the o-orthocomplemented p.o. set of  all closed 
subspaces of / / .  

Example 3. More generally, let H be a complex Hilbert space and let S be 
the set of  all non-negative self-adjoint trace operators of  trace 1. For every 
projection P, le t fp  be a function from S into [0, 1] defined byfp(A) = 
Trace(AP) for allA E S (we callfp a trace function). The set L of  all trace 
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function is a logic and (L, ~<, ') is isomorphic to the o-orthocomplemented 
p.o. set of  dosed subspaces of / / .  

Definition 4. L e t L  c [0, 1] s be a logic andL  1 a set of  complex-valued 
functions with domain S I (in particular, L 1 may be a logic). We say that the 
logic L can be represented in L 1 if there are a map ~o :S -+ S x and a map 
qJ :L -+L 1 such that ~(a)  o ~o = a  for all a E L .  

I f L  is represented in L 1, then the set o f  all functions ~ (a), a E L, restricted 
to ~o(S) is a logic isomorphic to L, 

A logic L C [0, 1] s is said to be reduced if functions in L separate points 
orS.  Every logic is isomorphic to a reduced logic. In fact, it is clear that L 
can always be represented in a reduced logic obtained from L by  identifying 
those points in the domain S at which all the functions in L take the same 
value and then defining new functions on the set of  equivalence classes. 

In the sequel we shall investigate the question under what conditions an 
arbitrary logic can be represented in one of  the logics of  Examples 1, 2 and 3. 

The following definition is frequently used in applications to quantum 
mechanics (see, for example, Gudder, 1970). 

Definition 5. A logic L is called quite full if  

a ~< b whenever a(u) = 1 implies b(u) = 1 

In other words, L is quite full if 

[ V u E S a ( u ) =  t =~b(u) = 11 ~ a < , b  

Definition 6. A quite full logic L is called complete if  for every A ___ L 
there is b C L such that  b(u) = 1 if and only i r a (u )  = 1 for all a E A. 

In a quite full logic L C_ [0, 1] s there is a natural correspondence between 
the members of  L and certain subsets orS.  

Definition 6. Let L C_ [0, 1] s be a logic. For each a E L, the set Ma = 
(u E S: a(u) = 1) is called the characteristic subset of  S corresponding to a. 
The set of  all characteristic subsets will be denoted by L s. 

L s is partially ordered by set inclusion. We may also try to define a map 
': L s ~ L s by M~ = Ma,, but  it is necessary to investigate when it is well defined. 
For a quite full logic this is so, and we have the following theorem which 
characterises quite full logics. 

Theorem 3. Let L C [0, 1 i s  and let L s  = (Ma : a E L )  be the set of  charac- 
teristic subsets. L is quite full if  and only i f a  ~< b is equivalent toMa C_Mb. I f  
L is quite full, then the map M a = M a, is well defined and (L, ~<, ')  is isomorphic 
to (L s ,  C_C_, '). I f L  is a complete quite full logic, then (Ls ,  C_C_, ') is a complete 
orthomodular set lattice in which meets coincide with set intersections. 

Proof  It is clear that in any logic a ~< b implies Ma C__ Mb. Since Ma C_ M b 
means that  a(u) = 1 implies b(u) = 1, L is a quite full logic if and only if 
M a C M b implies a ~< b. In this case the map ~o: a -+M a is one-to-one, since 
Ma = Mb implies a ~< b and b < a, i.e. a = b. Hence if L is a quite full logic, the 
map ~0 is order preserving and each M a uniquely determines its function a. 
Consequently, for a quite full logic the map M a = Ma' = m ( a -  a) i$ well defined 
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and tp(a') = 9(a)'. Hence 9 preserves orthocomplementation. We also have 
~p(0) = O- Thus (L, <~, ') and (Ls, C_C_, ') are isomorphic under the correspondence 
a ~ M  a i fL  is quite full. Now let L be a complete quite full logic. For each 
A C_C_ L there is b E L such that b(u) = 1 if and only if a (u) = 1 for all a E A. 
This means that u C M b if and only if u C M a for all a C A, that is, M b = ("1 M a. 

a ~ A  

Thus in (L s ,  C__) the intersection of every subset of L s belongs to L s and is 
clearly the meet in (Ls, _,  '). Since in any orthocomplemented p.o. set de 

' C Morgan s laws hold, we have for every A _ L 1.u.b. {Ma: a C A )  = g.l.b. 
' C '  - ~ '  " (M~: a CA).  Hence (Ls, _,  ), and consequently (L, -~, ), is a complete 

lattice (but since in Ls the complement ' need not coincide with the set- 
theoretical one, in general the join does not coincide with set-theoretical 
union). Property (e) implies that this lattice is orthomodular. This concludes 
the proof of the theorem. 

All the examples of logics discussed above are examples of quite full logics. 
This is obvious for Example 1. In Example 2, for fp (u)  = (Pu, u)  we have the 
characteristic subset Mp = (u C S: (Pu, u) = 1 ). It is clear that u c M e if and 
only if u is a unit vector in the range R (P) of the projection P. Consequently, 
Mp_C M o_ implies that P < Q, which is equivalent to fp (u)  <~ f,Q (u) for all u. 
In Example 3, the characteristic subset for the function fp, where re(A) = 
Trace(AP), is the set M e = {A E S: Trace(AP) = 1 ) consisting of all orthogonal 
projections on one-dimensional subspaces contained in the range of P. Hence 
we also have that Mp _ MQ implies P ~< Q and consequently Trace(AP) <~ 
Trace(AQ) for all non-negative self-adjoint trace operators of trace 1, i.e. 
fp  < f Q  in the togic L. The logics of Examples 2 and 3 are clearly also 
complete. 

We shall now examine the question when a logic is a Boolean algebra with 
respect to the natural order. 

Theorem 4. A logic L is a o-complete Boolean algebra with respect to the 
natural order ~< with complementation - a  = a' = 1 - a if and only if for any 
a, b C L there are ci ,  c2, c3 in L such that c I + c2 + c3 ~< 1 and a = c 1 + c2, 
b =C 2 + C  3. 

This theorem has been proved in Maczyriski (1973b). 

Corollary. I fL is a quite full logic satisfying the condition of Theorem 4, 
then the set of characteristic subsets L s is a Boolean algebra (but in general 
the complementation in L s need not coincide with the set-theoretical one). 

On the other hand we have the following theorem. 

Theorem 5. Let L C C_ [0, 1 ]s be a complete quite full logic where all the 
functions in L take values in the set (0, 1) only. Then (L, ~<, ') and (Ls,  C__, ') 
are complete Boolean algebras, and in L s the Boolean operations coincide 
with the set-theoretical ones. 

Proof. It suffices to show that in (Ls,  C__, ') the complementation coincides 
with the set-theoretical one. Let a C L,  Ma C L s. Since M a = {u C S: a (u) = 1 ) 
and a takes values in the set (o, 1 ) only, we have 
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S - - M  a = { u E S : a ( u ) = 0 }  = (uCS :  1 - a ( u ) =  1) 

= {uES:  a'(u)= 1} =M a, =M; 

We now have for anyA E L ,  

1.u.b. {Ma:aEA}=g . l . b . {Ma:aEA}  = A ( S - M a : a E A  } 
a ~ A  

= U M ~  
a E A  

Thus in (L s,  C C, ') lattice operations coincide with set-theoretical ones, so that 
(Ls, C_, ') and consequently (L, % ') is a complete Boolean algebra. 

We have seen from Theorem 3 that a complete quite full logic L is isomorphic 
to the orthocomplemented set lattice L s in which meet coincides with set 
intersection but complement and join do not in general coincide with set 
operations. The most typical example of such a lattice is the orthocomplemented 
lattice of closed subspaces of a complex Hilbert space. Owing to a theorem 
of Kakutani & Mackey (1946) we know that to conclude that L s is in fact of 
this type it suffices to assume only that (Ls, c )  is isomorphic to the lattice 
of closed subspaces of a complex infinite dimensional Banach space. Before 
we state the relevant theorem let us give one additional definition. 

Definition 7. A probability measure on a a-orthocomplemented p.o. set is 
pure if it cannot be represented as a non-trivial convex combination of other 
probability measures (see Mackey, 1963). A logic L C [0, 1] s is said to be 
pure if every point in the domain S induces a pure probability measure on 
(L,~<, '). 

Theorem 6. Let L c__ [0, 1] s be a pure complete quite full logic for which 
the lattice of characteristic subsets (Ls, C) is isomorphic to the lattice of all 
closed subspaces of an infinite dimensional complex Banach space. Then L 
can be represented in the set of projection quadratic forms on a complex 
Hilbert space (i.e. L is essentially of the type discussed in Example 2). 

Proof. Assume that (Ls, C C_) is isomorphic to the lattice L (V) of all closed 
subspaces of an infinite dimensional complex Banach space V. Since (L s, C_) 
has an orthocomplementation, it follows that the lattice L(I0  also has an 
orthocomplementation. From the theorem of Kakutani & Mackey (1946) (see 
also Varadarajan (1968), Theorem 7.1) it follows that there exists an inner 
product ( . ,  .) on V x V such that (i) V becomes under ( . ,  .) a complex Hilbert 
space H; (ii) the topology induced by ( . ,  .) coincides with its original topology; 
and (iii) the original complementation coincides with the orthocomplementation 
induced by ( . ,  .). Consequently, (L s, _, ') and thus (L, <,  ') is isomorphic to 
the lattice of closed subspaces or equivalently to the lattice of orthogonal 
projections L(//)  in the Hilbert space/-/. Let ff: L -+ L(H) be the map that 
establishes this isomorphism. Now let m u be the pure probability measure 
on (L, ~<, ') induced by u E S, i.e. mu(a ) = a(u) for all a E L. Then m u o ~-1 
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is a pure probability measure on L(H). By Gleason's theorem (Gleason, 1967), 
each pure probability measure on L(//) is induced by a unit vector in H; that 
is, for each u E S there is a unit vector ~0(u) E H such that mu(~-I (p)) = 
(e~o(u), ¢(u)) for a t lPE  L(H). Let ~-1 (e) =g, ~(~2) =P, and let fp(v) = (Pv, v) 
be the projection quadratic form induced by P. Hence we have mu(a ) = 
f ,  (a)(3o(u)) for all u E S, i.e. a = re(a)o ~. Denoting re(a) by ~'(a) we see that 
a = ~k(a) o ¢, where ~" is a map from L into the set of projection quadratic 
forms on H and ¢ is a map from S into the unit sphere in H. According to 
Definition 4 this means that the logic (L, ~<, ') has been repreiented in the set 
of projection quadratic forms on H. Hence Theorem 6 has been fully proved. 

Theorem 6 shows that the set of projection quadratic forms restricted to 
the unit sphere of H forms a logic isomorphic to (L, ~<, '). 

If we drop the assumption that L is pure we can still represent L in the set 
of trace functions in H. We namely have the following theorem. 

Theorem 7. Let L C_C_ [0, 1 ]s be a complete quite full logic for which the 
lattice of characteristic subsets (Ls, C) is isomorphic to the lattice of all 
closed subspaces of an infinite dimensional complex Banach space. Then L 
can be represented in the set of trace functions fp(A) = Trace(AP) induced 
by orthogonal projections on a complex Hilbert space and defined on the set 
of all non-negative self-adjoint trace operators of trace 1. 

Proof. Similarly as in the proof of Theorem 6, let ~ be the function 
establishing the isomorphism between (L, <, ') and the lattice of orthogonal 
projections L(H) on the Hilbert space H defined in the proof. For each u E S, 
m u o qj-1 is a probability measure (not necessarily pure) on L(IT). Again from 
Gleason's theorem it follows that there exists a unique non-negative self- 
adjoint trace operator of trace t, ~(u) = A, such that mu( ~-1 (p)) = Trace(AP) 
for all P E  L(H) (see, for example, Mackey (1963) for details). Let S 1 be the 
set of all non-negative self-adjoint trace operators of trace 1, and for each 
eEL(H)  letfp :S 1 -+ [0, 1] be the f~anction defined by fp(A) = Trace (AP) 
for all A E S 1 (it is a trace function of Example 3). If i ~ (P )  = a, then 
mu(a) =fO(a)(So(u)) for all u E S, i.e. a = ~-(a) o ~o where if(a) = re(a)- Hence 
(L, ~<, ') has been represented in the set of all trace functions. This ends the 
proof of Theorem 7. 

Observe that in contradistinction to what we had in Theorem 6, the map 
~o from the domain S of the logic L to the domain S 1 of trace functions is 
uniquely defined. This stems from the well-known fact that although a unit 
vector in the Hilbert space corresponding to a pure state is not unique (it is 
defined up to a constant multiplier of modulus 1), the self-adjoint trace 
operator of trace 1 (density operator) corresponding to a state is uniquely 
determined. 

Theorems 6 and 7 demonstrate the meaning of the notion of complete 
quite full logic in the theory of quantum logics. A complete quite full logic 
forms an intermediate step between an arbitrary logic and the logic based on 
closed subspaces of a Hilbert space. It is similar to the Hilbert space logic in 
that it is isomorphic to a lattice of subsets of some set S with meet corre- 
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sponding to set intersection, so that it suggests the lattice of  subspaces of  a 
vector space as a next natural step in specialising it. On the other hand, it is 
still general enough to admit a simple algebraic characterisation. This explain 
why the assumption that a quantum logic is complete and quite full is 
frequently made in axiomatic quantum mechanics. 
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